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served at ~390 nm for the trans CUS2N2 chromophore of 
Cu(H2NCH2CH2SCH3)2-2C104.20 
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Table I." Velocities of Methyl Transfer to DHA from AdoHcy-
CH3 and AdoHcy-CD3, Catalyzed by COMT 

105[AdoMet], 
M 

3.86 
7.73 

11.59 
15.45 

38.63 
103.0 

109K(M 

AdoHcy-CH3 

1335 ± 7 , 977 ± 11 
1922 ±7 , 1854 ± 7 , 

1823 ± 6 
2011 ± 5, 2024 ± 5 
2282 ± 5, 2307 ± 5, 

2280 ± 4 
2436 ± 6, 2545 ± 6 
2728 ± 11,2361 ± 8 

; min-1)* 

AdoHcy-CD3 

_ 
2049 ± 6, 2021 ± 6, 

1957 ± 8 
2386 ± 5, 2290 ± 5 
2659 ± 4, 2597 ± 5, 

2597 ± 5 
2813 ±7 , 2838 ± 9 
3024 ± 12, 3155 ± 11 

0 Rates measured at 360 nm, 37.00 ± 0.05°, phosphate buffer 
(0.125 M), pH 7.6, [Mg2+] = 1.5 X IO"3 M, [DHA] = 2.5 X 
10-4 M, [dithiothreitol] = 4.5 X IO"3 M, protein = 0.839 mg/ml. 
Velocities in M min-1 were calculated from d(absorbance)/df 
using A360

eff = 2877. * Error limits are standard deviations within 
a single run. 

AdoMet + DHA 
COMT 

Mg2 ' 

S-adenosylhomocysteine 

(AdoHcy) 

.OCH3 

(D 

COCH3 COCH3 

,NH3
+ 

CL 3 - + S . 

OH OH 

1, AdoMet or AdoHcy-CL3 

COCH3 

2, DHA 

SN2-Like Transition State for Methyl Transfer 
Catalyzed by Catechol- O-methyltransferase1 

Sir: 

The velocity of methyl transfer (eq 1) from 5-adenosyl-
methionine (AdoMet or AdoHcy-CL3, 1, L = H or D) to 
3,4-dihydroxyacetophenone (DHA, 2), catalyzed by rat-
liver catechol-O-methyltransferase (COMT),2 is increased 
substantially by trideuteration at the transferred methyl 
group ( K H / K D = 0.832 ± 0.045 at 37.00 ± 0.05°). This in­
verse a-deuterium secondary isotope effect is exactly what 
is observed for many classical S N 2 reactions in organic-re­
action systems,3 and constitutes a strong indication that 
COMT catalysis involves rate-limiting S N 2 methyl transfer 
with a trigonal-bipyramidal transition state of the type 
shown in structure 3. This information should prove critical 

for efforts now in progress4 to design transition-state-ana­
logue inhibitors, in part for use as drugs, of this important 
enzyme and closely related enzymes of the liver and central 
nervous system.5 

Table I shows velocities of methyl transfer by COMT at 
various concentrations of AdoHcy-CH3 and AdoHcy-CD3. 
The data for the CH 3 cofactor generate the Michaelis-
Menten expression of eq 2, while that of eq 3 is produced by 
the rates for the CD3 cofactor. 

109KH (M min"1) = (2760 ± 90)[AdoMet]/)[AdoMet] 
+ (4.1 ±0 .6 ) X 10-5! (2) 

1O9K0 (M min"1) = (3220 ± 60)[AdoMet]/([AdoMet] 
+ (4.3 ± 0.4) X 10"5S (3) 

Absorbance changes at [AdoMet] « Km were too small to 
permit an accurate determination of Km. Although the 
mean values of Km

H and Km
D are essentially equal, the 

large experimental error precludes definite exclusion of a 
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Table II." Velocities and Isotope Effects for COMT-Catalyzed 
Methylation of DHA by AdoHcy-CH3 and AdoHcy-CD3 

Cofactor* 109K(M min"1)' K H / ( V 

a [AdoMet] = 1O-3 M. Experimental conditions other than 
[AdoMet] are same as in Table I. * The suffixes I and II refer to 
completely independent biological preparations of the labeled and 
unlabeled cofactors. c Error limits are standard deviations within 
the single run. The three data sets were obtained on separate days. 
Differences in rates may reflect slight changes in enzyme activity. 
d Calculated as the ratio of adjacent measurements. 

binding isotope effect. A substantial isotope effect is, how­
ever, observable for the maximum-velocity term: K^m3x/ 
FD

max = 0.86 ± 0.04. For confirmation and further defini­
tion of this effect, carefully matched sets of velocities were 
obtained for CH 3 and CD3 cofactors at [AdoMet] = 10~3 

M =* 20Km. These are shown in Table II, and yield a mean 
value K H / ^ D = 0.832 ± 0.045. 

For these experiments, AdoHcy-CD3 was prepared by bi­
ological adenosylation of [methyl-2H3]-L-methionine 
(made from [methyI-2H3]methyl iodide and S-benzyl-L-
homocysteine in sodium-liquid ammonia;6 extent of deuter-
ation (NMR): 90 ± 5% in cofactor), using a preparation of 
the yeast Saccharomyces cerevisiae.1 Protiated AdoMet 
(AdoHcy-CH3) was prepared in the same way and two 
completely independent preparations of AdoHcy-CH3 gave 
indistinguishable velocities, while two completely indepen­
dent preparations of AdoHcy-CD3 gave identical velocities, 
quite distinct from those for the AdoHcy-CH3 preparations 
(Table II). 

Although the results strongly imply a trigonal-bipyram-
idal transition-state structure (as in 3), they cannot indicate 
the nature of the methyl donor and acceptor structures X 
and Y. Our data are consistent with (1) rate-determining 
methyl transfer directly from AdoMet to DHA, or (2) 
methyl transfer from AdoMet to enzyme followed by en-
zyme-to-DHA transfer, with either or both steps determin­
ing the rate. Kinetic and inhibition studies are currently in 
conflict as to the likely involvement of a methylated-enzyme 
intermediate.8 If two or more sequential steps or parallel 
pathways (as in meta and para methylation of DHA) con­
tribute to rate limitation, the observed isotope effect will be 
a weighted average. The highest free-energy activated com­
plex will be weighted most heavily for sequential processes 
and the lowest free-energy activated complex will be 
weighted most heavily for parallel processes. The large 

magnitude of the isotope effect observed here strongly 
suggests a "tight" S N 2 character3 for all contributing tran­
sition states. 

The reasonably high precision within each set of enzy­
matic rates obtained here is due in part to the excellent sta­
bility of the COMT preparation and in part to the use of an 
automated spectrophotometric data-acquisition system. 
During each kinetic run, this system collects 1000 kinetic 
points (absorbances at 360 nm, determined by direct obser­
vation of the thermostated reaction mixture) each at least 
15-fold time-averaged and in the current work 900-fold 
time-averaged, by direct digitization of the photomultiplier 
signal of the Cary 16 spectrophotometer. The data are 
stored in a Hewlett-Packard 2100A computer and fit to the 
appropriate rate law by a general least-squares procedure. 
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The Synthesis of Zoanthoxanthins 

Sir: 

Zoanthoxanthins1-5 are highly fluorescent metabolites of 
colonial anthozoans, marine animals belonging to the order 
of Zoanthidae. The pigments thus far identified belong to ei­
ther the parazoanthoxanthin( 1,3.5,7-tetrazacyclopent[/]az-
ulene) or the pseudozoanthoxanthin(l,3,7,9-tetrazacyclo-

AdoHcy-CDj-I 
AdoHcy-CHj-I 
AdoHcy-CD3-I 
AdoHcy-CH3-I 
AdoHcy-CD3-I 
AdoHcy-CH3-I 
AdoHcy-CD3-I 
AdoHcy-CH3-I 
AdoHcy-CD3-I 
AdoHcy-CH3-I 
AdoHcy-CD3-II 
AdoHcy-CH3-II 
AdoHcy-CD3-I 
AdoHcy-CD3-II 
AdoHcy-CH3-II 
AdoHcy-CDj-I 
AdoHcy-CD3-II 
AdoHcy-CH3-I 
AdoHcy-CD3-II 
AdoHcy-CH3-I 
AdoHcy-CD3-II 
AdoHcy-CH3-I 

3045 ± 4 
2507 ± 3 

3123 ± 4 
2636 ± 3 

3063 ± 2 
2651 ± 4 

3047 ± 3 
2403 ± 3 

3011 ± 3 
2634 ± 7 

2817 ± 4 
2172 ± 5 

2732 ± 6 
2780 ± 4 

2192 d= 5 
2819 ± 5 
2865 ± 5 

2636 ± 5 
2869 ± 4 

2384 ± 4 
2851 ± 5 

2309 ± 6 

0.823 
0.803 
0.844 
0.861 
0.865 
0.870 
0.789 
0.798 
0.875 

0.772 
0.795 

0.789 
0.778 

0.920 
0.919 
0.831 
0.836 
0.810 

Mean 0.832 ± 0.045 
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